Discussion 7 Worksheet

Date: 9/15/2021
MATH 53 Multivariable Calculus

1 Chain Rule

(a) Compute $\frac{d}{d t} f(x(t), y(t))$ for $f(x, y)=x y^{3}-x^{2} y, x(t)=t^{2}+1, y(t)=t^{2}-1$. You don't need to express the final result in terms of t.
(b) Compute $\frac{d}{d t} f(x(t), y(t))$ for $f(x, y)=\sin x \cos y, x(t)=\sqrt{t}, y(t)=1 / t$. Express the final result in terms of t.
(c) Compute the partial derivatives of f with respect to x, y for $f(s, t)=s^{2}-t^{2}, s=\frac{x+y}{2}, t=$ $\frac{x-y}{2}$ using both the chain rule and by plugging in s and t.
(d) Compute the partial derivatives of $f(x, y)=\left(\sqrt{x^{2}+y^{2}}-\frac{1}{\sqrt{x^{2}+y^{2}}}\right) e^{\frac{x^{2}+y^{2}}{2}}$ by identifying an appropriate expression $r(x, y)$ such that $f(r)$ is a simpler expression. You can assume $(x, y) \neq$ $(0,0)$. It's fine to have r in the final expression.
(e) Suppose z is given by $z=e^{s+2 t}$, where $s=x / y$ and $t=y / x$. Compute $\partial z / \partial x$ and $\partial z / \partial y$. Express the result in x, y and z.

2 Challenge

Consider the function

$$
f(x, y)= \begin{cases}\frac{x^{3} y-x y^{3}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that $f_{x y}(0,0)$ and $f_{y x}(0,0)$ but exist, but are unequal. Warning: Since the second partial derivatives are discontinuous at $(0,0)$, you will not get the right answer by evaluating $f_{x y}(a, b)$ and $f_{y x}(a, b)$ and taking the limit for $(a, b) \rightarrow(0,0)$.

3 True/False

(a) T F Consider $f(x, y)=(\cos x+(1+x) \tan y) e^{x^{2}-1+y}$. Then $\frac{d}{d t} f\left(t^{2}, t^{3}\right)=0$ at $t=0$.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

